Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Transl Res ; 16(5): 1153-1165, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37160546

RESUMEN

Our primary goal here is to demonstrate that innovative analytics of aneurismal velocities, named velocity-informatics, enhances intracranial aneurysm (IA) rupture status prediction. 3D computer models were generated using imaging data from 112 subjects harboring anterior IAs (4-25 mm; 44 ruptured and 68 unruptured). Computational fluid dynamics simulations and geometrical analyses were performed. Then, computed 3D velocity vector fields within the IA dome were processed for velocity-informatics. Four machine learning methods (support vector machine, random forest, generalized linear model, and GLM with Lasso or elastic net regularization) were employed to assess the merits of the proposed velocity-informatics. All 4 ML methods consistently showed that, with velocity-informatics metrics, the area under the curve and prediction accuracy both improved by approximately 0.03. Overall, with velocity-informatics, the support vector machine's prediction was most promising: an AUC of 0.86 and total accuracy of 77%, with 60% and 88% of ruptured and unruptured IAs being correctly identified, respectively.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Simulación por Computador , Informática , Hemodinámica
2.
Biomed Phys Eng Express ; 9(3)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36626819

RESUMEN

Although applying machine learning (ML) algorithms to rupture status assessment of intracranial aneurysms (IA) has yielded promising results, the opaqueness of some ML methods has limited their clinical translation. We presented the first explainability comparison of six commonly used ML algorithms: multivariate logistic regression (LR), support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), multi-layer perceptron neural network (MLPNN), and Bayesian additive regression trees (BART). A total of 112 IAs with known rupture status were selected for this study. The ML-based classification used two anatomical features, nine hemodynamic parameters, and thirteen morphologic variables. We utilized permutation feature importance, local interpretable model-agnostic explanations (LIME), and SHapley Additive exPlanations (SHAP) algorithms to explain and analyze 6 Ml algorithms. All models performed comparably: LR area under the curve (AUC) was 0.71; SVM AUC was 0.76; RF AUC was 0.73; XGBoost AUC was 0.78; MLPNN AUC was 0.73; BART AUC was 0.73. Our interpretability analysis demonstrated consistent results across all the methods; i.e., the utility of the top 12 features was broadly consistent. Furthermore, contributions of 9 important features (aneurysm area, aneurysm location, aneurysm type, wall shear stress maximum during systole, ostium area, the size ratio between aneurysm width, (parent) vessel diameter, one standard deviation among time-averaged low shear area, and one standard deviation of temporally averaged low shear area less than 0.4 Pa) were nearly the same. This research suggested that ML classifiers can provide explainable predictions consistent with general domain knowledge concerning IA rupture. With the improved understanding of ML algorithms, clinicians' trust in ML algorithms will be enhanced, accelerating their clinical translation.


Asunto(s)
Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/diagnóstico , Teorema de Bayes , Redes Neurales de la Computación , Algoritmos , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...